One Shot Robust Parameter Generation

Aashi Manglik Nilesh Kulkarni Rawal Khirodkar
amanglik@andrew.cmu.edu nileshk@andrew.cmu.edu rkhirodk@andrew.cmu.edu

Abstract

We propose to learn a generator conditioned on the data to regress directly over
parameters of the classifier. Our problem set-up involves having two kinds of
data-sets a) Inhand-dataset b) Oracle-dataset. In the inhand dataset, the model
has access to the training points and corresponding labels, while for the oracle
dataset the model only has access to how well it is doing on the oracle dataset.
The objective is to output a better classifier by repeatedly querying the oracle-
dataset and understanding the points of vulnerability of the predicted classifier. For
now, we test our model on synthetic data and show that it is possible to learn a
representative model which is able to generate classifier weights by just looking
once at the training data.

1 Introduction

Current classification algorithms rely heavily on train and test set distributions and are very data-
driven. An important problem is to move away from data-based models which only work on
classifying a given train set. In this proposal we propose a meta-learning algorithm that can learn
to find a set of parameters for the underlying classifier without performing back-propagation over
the generated parameters. For instance, consider all 2-cluster data-sets drawn from independent
gaussians in 2-dimensional space. We would like to learn a neural network that would take input
the data and output the linear separator for the two gaussians. Though this problem is very simple
conceptually and SVMs [[10] are known to to find the max-margin classifier, it requires to solve a
Quadratic Program every time we receive a new train set data. On the contrary our algorithm takes
input the data and spits out a classifier that would be max-margin on the real underlying distribution
of the data.

We know the classifiers robust to noise are max-margin classifiers. Especially in the case of SVMs
solving for the max-margin classifier comes from the problem formulation which tries to add the
max-margin as an objective in the optimization. Here, we propose to learn robust classifiers by using
neural networks without enforcing such a constraint in the objective. Learning robust features over
a training set involves various tricks like adding noise to the training, data augmentation but such
hacks and trick still cannot cover the complete underlying distribution. This is the same reason why
validation/test performance of our networks are lower as compared to the train set.

Second important problem is that there exist multiple solutions to a particular problem and there
is no unique classifier that is the best classifier. There is only one Bayes optimal solution but it
requires having access to the underlying distribution of the data which more often is not available.
Thirdly, we would want our algorithms to understand the data points that are most adversarial to their
performance. Keeping this in mind we would want our classifier to hallucinate modes of error and
improve the generated parameters so that it becomes more robust on the test set.

In this work, we trained a generator network described in[4.2.1] that outputs the parameters of a linear
decision boundary on the given dataset. The output classifier is accurate on training data which needs
to be improved further to generalize well to test data and be robust to noise. To impart robustness, we
optimize over a reward given by hidden dataset as described in4.3]

10.701 Class Project 2018.

The contributions of this paper are twofold.

e A generator network is introduced that outputs the classifier of any given linearly-separable
dataset in one forward pass.

e The solution given by the generator network is robust to noise and generalize well to test
data. This is facilitated by using a policy gradients approach where our agent is the generator
network and parameters of classifier are analogous to the actions taken by agent. The world
then evaluates the classifier on different input points whose true labels are unknown to the
agent. This evaluation score becomes the reward given to the generator network and our
method tries to maximize this reward.

2 Related Work

Optimizing neural networks has always been a problem, and a lot of approaches have been tried to
address the issue of optimization by proposing various optimizers like SGD, Adam [6], that try to
optimize on the heavily non-convex manifold of these loss functions. Such a non-convex manifold
suggests existence of various possible optimums, but most of our current approaches converge to one
such extrema near their initialization. Optimizing for maximum likelihood leads to over fitting in
neural networks.

Bayesian neural networks [1} 8] define an alternate model where the prediction of the function is
an expectation over all possible values of the parameters where the parameters are drawn from a
learned probability distribution. There has been recent work on modelling parameters of a neural
network using high capacity neural networks that try and optimize over the parameter space [4].
Various approaches have been tried to explore the dynamic routing [[12] where the prediction function
is non static in architecture. [2]] models a distribution over weights implying that no one particular
combination of the weights is best. Such modelling leads to creation of ensemble of networks that
can have multiple predictions for the same neural nets.

3 Dataset

3.1 Synthetic Dataset

We used a synthetic dataset D for the task of binary classification. For every D € D), we sample
two clusters each consisting of 500 points. Each cluster is sampled from a multivariate Gaussian
distribution of randomly chosen mean and covariance. Thus, the training dataset can be denoted by
Dy = {D1, D, Ds,, Dk }. Each test example consists of a binary classification task on randomly
created 2-clusters. Here, we report the results from bivariate Gaussian distributions.

4 Methods

In this work we are trying to solve two sub-problems.

e Search for Solution: We try to learn a model which predicts a solution to the problem by
just observing the data (this is what we mean by one shot)

e Search for Good Solution: We address the fact that not all solutions are desirable, you might
be interested in a particular kind of solution. We further tried to model only such desirable
solutions. Our metric for defining "goodness" of the solution is simply how it performs on
both training and test data.

For ease of understanding we divide the methodology section into three subsections. First subsection
introduces notation relevant to our work. Next two subsections are devoted to solving both the
sub-problems introduced above.

4.1 Notation

o T be the task of interest for which we seek to find solutions, our preliminary work focuses
on T = binary classification.

o D is the distribution of all possible datasets pertaining to the task T.
e Dataset D € D, where D = {(z1,y1), (22,92), ...(xn,yn)}

e For simplicity, we assume number of data points N and dimensionality p of each data point
is same forall D € D

e S(D) represent the set of all solutions which successfully solves the dataset D in the context
of task T

e 0 € S(D) represent one such solution to the dataset D.
e © =pep S(D). O represents the solution space of all our datasets D € D.

4.2 Search for Solution

We wish to learn a function G : D — O such that the function G directly maps the dataset D to one
of the solutions in the set S(D) i.e

G(D)=40,0 € S(D)
We know proceed with modelling and learning this function G.

4.2.1 Modelling G

We model the function G using a fully connected neural network. G consists of two hidden layers
with ReLLU activations.

In our experiments we set N = 1000,p = 2, i.e each dataset D & D contains 1000 data
points and z € R2. As T is binary classification, y € {—1,1} and we ensure equal proportion of

both classes in the dataset D. This also implies that our solution space © C R2.

Furthermore, D can be represented as concatenation of [x;7,1,4;]Vi € {1,2,3..N}, overall
a flat 4000 dimensional vector which acts as our input to G.

To model the uncertainty in our output €, we use the probabilistic approach and predict the
mean 0,, and standard deviation of the 0, representing the normal distribution of 0, i.e

G(D)=16,,9,

0~ N(0,,0,%)

6 € S(D)
D -] O
Xy ‘ ‘
- a
si=GIEIEE
L lI| ‘ (i

O

Figure 1: Methodology

4.2.2 Loss Function

We train G by evaluating the output 6 on D using the Hinge Loss.

G = argming L(D, G)
LD, G) = ZDe]D) La(D)
Le(D) = Zf\il lapy (@i, yi)
lo(z,y) = max(0, —yfT x)

The overall loss is differentiable with respect of parameters of G and can be trained end to end using
backpropagation.

4.3 Search for Good Solution

In this section, we further investigate whether we can push our model G to find desirable solutions
rather than just any solutions. For example, in the simple case of linearly separable data, there can
exist many decision boundaries correctly separating the data, but the max margin decision boundary
is desirable as it is most robust to noise.

In the same spirit, for the specific task T of binary classification in case of linearly separa-
ble data, we train our model G using reinforcement learning, hoping the solutions generated by it
would be robust to noise.

Section 4.2 successfully established our model G’s capability in regressing over one of the possible
decision boundary 6 € S(D) by just looking at the data D once.

4.3.1 Data Split

To achieve robustness and model the real life noise, we try to hide some of our data from the network
and still force it to do well on the hidden data. We believe this captures the essence of the robust
solutions (for example, max margin decision boundary).

Therefore, we divide our input dataset D into two kinds

e Inhand dataset D;: Contains 0.1 randomly sampled data points from D
e Oracle dataset D,: Contains 0.9 randomly sampled data points from D

D =[D;,D,]
4.3.2 Inhand Dataset D,

D; acts as the visible data to our model and is the input to our network G. We compute hinge loss
from section 4.2 only on the D; to train G in a supervised fashion.

4.3.3 Oracle Dataset D,
D, acts as hidden real life data to our model. We only evaluate the accuracy of the output § = G (D)
on D, for the task T of binary classification. The accuracy acts as a reward signal r to G while
training. Note, the target labels y in D, are completely hidden from our model G unlike D;.

G(D;)=0,.6,

0 ~N(0,,0,°)

r = accuracy(D,, 0)

0 € S([D;i, D,]

4.3.4 Loss Function

The loss function has two components, we minimize the hinge loss on D; and maximise our reward
onD,.

G = argming L(D, G)

LD, G) = ZDED La(D) = ZDGIDJ Le([Di, Do))
L([Di, D,)) = S0 lap:) (wi, yi) — R(G(D;), D,)
lo(z,y) = max(0, —yfT x)

R(G(D;), Do) = R(0,,,05, D,) = 3222 p(0,)accuracy (6, D,)
0y ~ N (0,,6,°)

p(05) =Probability[0s|N (0, 0,°)]

We use REINFORCE [[11]] to fine tune the model along with the hinge loss signal computed on the
inhand dataset alternatively. We sample 1000 times from the output of our network and compute
reward weighted by the probability of the sampled decision boundary

The goal of this methodology is to show that our model will directly regress to the maxi-
mum margin decision boundary by just looking at the training data once without directly optimizing
for a maximum margin objective function.

5 Experiments and Results

5.1 Datasets

We conduct our experiments on synthetic datasets. Our datasets have the following characteristics
a) Linearly Separable b) Two-dimensional in nature. Our task is that of binary classification. Later
we discuss how to extend our methods to datasets with larger dimensions and multi-class. A dataset
is collection of (X,Y") tuples where X represents a set of points and Y represents corresponding
labels (-1, +1) for those points. We have two kinds of datasets a) Sampled from Linear distribution
b)Sampled from Gaussian Distribution.

5.1.1 Gaussian Dataset

In this dataset we create 500 (X, Y) tuples. To create one (X, Y") tuple we sample ji1, p2 € R%. We
then randomly sample Ty (e.g 500) points each from A (u1, 1) and N'(uz, 1). The points from g
will get a label as +1 and o get a label -1. We call this in-hand data (X, —hand, Yin—hand)- NOW
we create one more sampling called (Xorqcie, Yoracie) Where we sample Viy (e.g. 9500) points each
from N (1, 3) and N (u2, 3). We called this the oracle dataset.

>
® > 00

-20

-25

-30

Figure 2: Left : Gaussian Data sample. Orange : Oracle data from y;, Blue : Oracle data from
12, Green : In-hand data from g1, Red : In-hand data from po. Right : Line Data sample. Similar
convention as earlier

5.1.2 Line Dataset

In this dataset we create 500 (X,Y"). To create one (X,Y") tuple we sample M points on a line
(basically we sample a slope, and intercept). Now given a slope m, and intercept ¢ we sample M (e.g
10000) points in R? such that they lie between (-5,5) in their first dimension. In a similar fashion
another set of M points are sampled on the line at distance of 5 units from the current line with slope
(m) and intercept(c) which has slope m and intercept ¢’. Now of the M sampled points we choose Ty
(e.g. 500) points as the part of the inhand data (X, —rand, Yin—hand) and the rest Vy = M — Ty
(e.g. 9500) points as part of the oracle data (X,rqcie, Yoracie). We do the splitting process for both
the datasets and assign the line with intercept ¢ as +1 labels and the one with intercept ¢’ as -1 labels

5.2 Evaluation : Quantitative

We evaluate the network GG on the above two mentioned datasets as toy task. We used 500 data tuples
from the gaussian data process to train. Below in Table 5.2 we report our performance on oracle and
in-hand datas using both the methods described above as Supervised and Supervised + PG

H Method In-Hand Oracle H

Supv 952% 89.3%
Supv+RL 97.3% 92.6%

5.3 Evaluation : Qualitative

In the following examples we see the difference between the classifiers generated by the above two
methods As we see int the Figure [3]the observation we have is that once the Supv method achieves

- -l- - e
-+ L i) .f -f” b ue R
MY TS AT AT
. T PP "t .
* ‘."'.: o @‘t‘ b‘gg :.\" i
L Yol oy """.a.ﬁa'g‘ . o
5 . ty
Vi :..\.; .9‘4 @ ;-c;. ,é.-
R P L UL L L A 4 -1 0 2 1
' e !

Figure 3: The thick line represents the classifier learned via using the supervised (Supv) method, and
the dotted line represents the classifier when using the Supv + PG. Left Gaussian data, Right Line
data

100 % accuracy on the In-Hand data, because of our loss formulation (hinge loss) the loss values
drops to zero for any classifier lying in the margin between the two data clusters. This is traditionally
handled by adding the max-margin constraint to the objective and in most non-convex optimization
methods achieved by regularizing the model parameters. In our case introduction of the Oracle dataset
creates a kind of "goodness" measure between all the possible solution in the river of classifiers. We
see that the dotted lines in Figure [3]may not be the max-margin classifiers but we can surely see that
they are more robust than the non-dotted lines.

6 Conclusion and Future Work

There are several extensions of the above work that are crucial and needed to verify the hypothesis
further. Following are the avenues where possible contributions can be made in future.

e Extending to higher dimensions. Currently we have only demonstrated how the method
works on 2D data and the corresponding visualizations. We would like to extend the above
approach to higher dimensions but we expect the curse of dimensionality to play an important
role. We also believe that searching through all possible solutions would be not as trivial as
explained above.

e Extending the work to data-sets which are not linearly separable. Our proof of concept
has only been showed on a set of datas which are linearly separable which is similar to the
assumption that SVMs make. We believe that ideas from kernel trick can be straight away
applied to our method with a small change to the architecture. Instead of learning to predict
weights of the classifier predict the weights for various data-points in the in-hand data-set.

e Generating parameters of a neural network is what has been explored by us, but there have
been several papers that explore these ideas like [3, |13} [7]. Regularization is a serious
issues with neural networks and over-fitting to the train-set and lack of generalization has
encouraged researchers to constantly look for techniques and engineering hacks to avoid
over-fitting. [9} 5]

References

[1] Christopher M Bishop. Bayesian neural networks. Journal of the Brazilian Computer Society,
4(1), 1997.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424, 2015.

[3] Lior Deutsch. Generating neural networks with neural networks. arXiv preprint
arXiv:1801.01952, 2018.

[4] David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks. 2017.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Francon,
Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural
networks. arXiv preprint arXiv:1703.00548, 2017.

[8] Radford M Neal. Bayesian training of backpropagation networks by the hybrid monte carlo
method. Technical report, Citeseer, 1992.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929-1958, 2014.

[10] Johan AK Suykens and Joos Vandewalle. Least squares support vector machine classifiers.
Neural processing letters, 9(3):293-300, 1999.

[11] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages 5-32. Springer, 1992.

[12] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen
Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. arXiv
preprint arXiv:1711.08393,2017.

[13] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

	Introduction
	Related Work
	Dataset
	Synthetic Dataset

	Methods
	Notation
	Search for Solution
	Modelling G
	Loss Function

	Search for Good Solution
	Data Split
	Inhand Dataset Di
	Oracle Dataset D0
	Loss Function

	Experiments and Results
	Datasets
	Gaussian Dataset
	Line Dataset

	Evaluation : Quantitative
	Evaluation : Qualitative

	Conclusion and Future Work

