
Towards integrating model dynamics for sample
efficient reinforcement learning

Aashi Manglik
Robotics Institute

Carnegie Mellon University
amanglik@andrew.cmu.edu

Shashank Tripathi
Robotics Institute

Carnegie Mellon University
shashant@andrew.cmu.edu

Abstract

Despite outperforming average human performance on Atari games, model-free
reinforcement learning requires millions of training examples restricting their
application to environments in simulation. Humans, on the contrary, are much
more efficient in modeling environmental priors which allows faster learning of
optimal control policies. This work attempts to develop a principled approach
to solve the sample inefficiency problems associated while deploying model-free
approaches in real environments. Specifically, we wish to learn the dynamics model
using episodes generated in the real world, and use the learned model to augment
real-world episodes as the training progresses. We do not assume the availability
of a simulator, which necessitates that the agent learns the dynamics model with
relatively fewer real-world examples. We find that augmenting real world data
using an approximation of the dynamics model can be more sample-efficient than
naive model-free reinforcement learning.

1 Introduction

In this work, we explore the task of increasing the sample efficiency of model-free reinforcement
learning methods such as DQN[8] and REINFORCE[16]. As access to the real environment is
usually limited, we wish to limit the number of interactions required with the real environment for
finding the optimal policy. One way to solve this problem is to learn the dynamics function of the
real environment, which can then be used to generate fake episodes for training the reinforcement
learning agent. The model dynamics can be approximated using a neural network whose parameters
are trained on transitions sampled from the real environment.

Given access to the transition function, it is also possible to deploy model-based reinforcement
learning methods such as Value Iteration, Monte Carlo Tree Search (MCTS) [13] or Model Predictive
Control (MPC) [9]. However, when the state and action space is large, a model-based approach
struggles to generate a solution in real-time. Many problems in computer vision and robotics, such as
robot navigation, requires optimal action to be computed within a few milliseconds. Thus, doing a
Monte Carlo Tree Search (MCTS) using the transition function is not feasible within the desired time
budget. In contrast, in model-free reinforcement learning, a forward pass on a trained network could
output the optimal action in dynamic environments much faster. Even though model-free methods
are fast at test time, training a deep model-free network requires millions of interactions with the
real environment. To increase sample efficiency, we propose to learn the dynamics model on the
fly. Augmenting real world episodes with episodes generated by the learned model could reduce the
number of episodes to be collected in real world.

For experimentation, we test our approach on two environments: CartPole and Maze. Cartpole is an
easy environment with low-dimensional state-space and frequent rewards. We also create a custom
Maze environment that simulates a robot navigating in a crowd. The robot has to reach a defined goal

Deep Reinforcement Learning (16-720) Project (2018).

location and avoid any collision with fellow pedestrians. In this case, states are 16× 16 RGB images
and rewards are sparse, only occurring when the agent reaches the goal or collides with pedestrian.

1.1 Related Work

The wide popularity of Reinforcement Learning has been largely fueled by model-free deep rein-
forcement learning algorithms. Be it the task of playing video-games like an expert [8], defeating the
top ranking human in Go[12] or learning complex gaits for locomotion [3], model-free approaches
like Deep Q networks [8] and policy gradients [14] have been shown to be successful in a wide
array of tasks. However, such methods typically require millions of samples to achieve a reason-
able performance[2] restricting their application to simulated environments. In many real-world
applications, either a simulator is not available, or even if it is available, optimal policies learned
in simulation do not port well to the real-world. This inherent issue with model-free approaches
obviates their deployment in solving real world environments.

On the other end of the spectrum, model-based reinforcement learning approaches assume a transition
function that can predict future states given current state and actions. Having an accurate model
of the world can be thought of as having our own simulator which we can use to do multi-step
lookahead for planning. It is for this reason that model-based reinforcement learning algorithms
are widely considered to be more sample efficient in comparison to their model-free counterparts
[2]. However, in complex environments, when the observation space is large, building accurate
world-models is often a very challenging task, almost tantamount to predicting the future [11, 5, 1].
This problem is further aggravated in stochastic environments. For the task of model learning in
image-based environments, we take inspiration from the vast body of work in video frame prediction.
Walker et al[15], propose a variational autoencoder based approach to predict trajectories of pixels in
image sequences. Along the same lines, Lotter et al[7] present a neural network architecture called
"PredNet" for predicting future frames. These methods however do not condition video prediction on
agent/user actions as is common in robotic applications and Atari like environments.

Our dynamics learning neural network model has been largely inspired by the work of Oh et al[10],
who propose an autoencoder-like deep learning architecture to predict future frames conditioned on
actions. While Oh et al only predict the next frame, Leibfried et al[6] extend their architecture to
predict future rewards as well. In this work, we explore both these architectures. Additionally, we
also study an adversarial loss formulation to improve next frame prediction.

The closest work in this direction is by Nagabandi et al [9] who propose to use a deep neural network
dynamics model to initialize a model-free learner. They apply model predictive control on the neural
network dynamics approximation and use that as expert trajectories to initialize model-free learning.
Our approach is more robust as we sample even sub-optimal trajectories over the course of training.

2 Environments

We analyze the sample efficiency of model-free approaches in two different environments. The first
environment is the well-known CartPole available in OpenAI gym.

The second problem addresses robot navigation in crowded environments where the state observations
consist of a bird’s eye view (RGB image) of the scene as shown in figure 1. Specifically, we want to
train an agent navigating in a maze scenario to reach a goal state in the shortest time. The environment
is dynamic in nature and is filled with moving obstacles (people) which the agent needs to avoid.
Obstacles move along the same direction until they reach the boundary after which they turn around.
At the start of each episode, obstacles are placed randomly in the environment and start patrolling in
a randomly chosen direction. The stochasticity in initial obstacle placement and direction of motion
adds a high-degree of complexity to this task. The agent needs to learn from RGB images, the
high-level construct of trading-off between colliding with obstacles and reaching the goal quickly.
Collisions with the obstacle state render a -5 reward whereas reaching the goal state accrues +1
reward for every step the agent stays on that state. At each timestep, the agent will choose one of the
five possible actions - move left, right, forward, backward or wait.

2

Figure 1: Maze Environment: Blue square is the agent, red squares are moving obstacles, and green
square is the static goal. Agent receives a negative reward on collision with obstacles and positive
reward for reaching the goal. Faster it reaches the goal, more is the positive reward.

3 Methods

3.1 Prediction from physical state: CartPole environment

Cartpole’s physical state is represented by a 4-dimensional vector comprising of position of cart,
velocity of cart, pole angle and pole’s angular velocity. A multilayer perceptron shown in figure 2 is
trained to jointly predict the next state s′, reward r and probability that the next state is terminal p
using the following loss function.

L(θ) =

N∑
i=1

||s′i − trueSi||2 + (ri − trueRi)
2 − (d log p+ (1− d) log(1− p)) (1)

In above equation, θ represents the parameters of multilayer perceptron. trueSi, trueRi and d
denote the true next state, reward and terminal flag sampled from real environment respectively.
We used two hidden layers of 256 units each and a Stochastic gradient descent (SGD) optimizer with
a learning rate 0.01.

Figure 2: Network Architecture for learning the model dynamics of CartPole environment

3.1.1 Effect of the policy on state distribution

The policy of our agent determines the visitation distribution on states. For example, an optimal
policy will only take the agent to good states. To capture the true underlying model dynamics, we
trained the dynamics network on diverse policies as described in section 3.1.2. This ensures that the
training does not have any bias in the state visitation distribution and the network could generalize
well to any unseen state and action pair.

3.1.2 Training

Our method uses two different networks, one for learning the optimal policy and another for learning
the environment’s dynamics.

• Learning the optimal policy
To train for optimal policy, we implemented REINFORCE. For CartPole, REINFORCE
network is a multilayer perceptron with a single hidden layer of 8 units. It takes the four
dimensional state as input and outputs the probability over two actions.

• Dynamics model
The loss function and architecture of dynamics model is described in section 3.1.

3

Iterative updates in Policy gradients and Dynamics model
The training is divided into two phases.

• In the initial phase, we do not generate any fake episodes as the dynamics model is not trained
yet. The policy network updates its policy after each episode and the sampled transitions
(s, a, r, s′, done) are also used by the dynamics network to optimize the supervised loss
given by the equation 1.

• After the completion of N = 100 episodes, the trained dynamics model is used to generate
fake episodes following the training loop illustrated in figure 3.

3.2 Prediction from raw pixels: Maze environment

Figure 3: Iterative training of policy network and
the dynamics model

We use the same training procedure f r the Maze
environment. Here, our dynamics model archi-
tecture 4 consists of an encoder-decoder module
[10]. In order to capture temporal dependencies,
the encoder module takes four consecutive RGB
frames, concatenated along channels, as input.

The input frames are passed through a feed-
forward encoding module which consist of three
convolutional layers followed by a fully con-
nected layer. We hypothesize that the feed-
forward features capture high-level semantic
information better, which is not explicitly con-
tained in raw images. Since the next state is
conditionally dependent on both past states and
action, we take hadamard product between ac-
tion features and feed-forward features. The
combined features are then passed though a de-
coder module which consists of three transpose-
convolutional layers. The input vector to the
upsampling module can therefore be represented as: hdec = W dec(W enchenc �W aa) + b. The
upsampling module is exactly symmetric to the downsampling module. To stabilize learning and
ensure better gradient flows, we use Batch Normalization[4] after every layer except for the input
layer. Each layer is also followed by a ReLU non-linearity.

Figure 4: Network Architecture for learning the dynamics of maze environment

We tried several loss functions to optimize the dynamics networks:

1. L1 loss: Li = |x̂i − xi|
2. L2 loss: Li =

1
2 ||x̂i − xi||

2

3. Multi-label Binary Cross Entropy loss:

−
∑
i

y[i] ∗ log((1 + exp(−x[i]))−1) + (1− y[i]) ∗ log
(

exp(−x[i])
(1 + exp(−x[i]))

)

4

However, since we are dealing with stochastic environments, optimization using L1 and L2 loss
resulted in averaging over the possible locations. This led to blurry results. Multi-label binary
cross-entropy loss with a threshold of 0.2 resulted in much better recall on agents, obstacles and goal
states.

4 Results

4.1 Experiment 1: Predictions and sample efficiency for CartPole

The predictions of the trained dynamics model 2 are compared with the ground truth in Fig 5. The
blue curve shows the states and rewards from rolling out one fake episode while the orange curve
represents the real environment from OpenAI. The network accurately predicts the position, linear
velocity and pole’s angular velocity. However, it struggled to make correct predictions for pole angle.
We rolled out the fake episodes using these predictions to train policy gradients alternately with real
episodes.

(a) Cart’s position (above) and velocity
(below)

(b) Pole angle (above) and its angular
velocity (below)

(c) Reward prediction (d) Terminal state prediction

Figure 5: Predictions from model dynamics approximation

(a) REINFORCE (b) REINFORCE with dynamics model

Figure 6: Average training reward vs number of real episodes

5

With an addition of fake episodes, the policy gradients required lesser number of interactions with
real environment as shown in learning curves 6(a) and 6(b). Averaging over 10 runs, REINFORCE
alone solved the environment in 650 episodes whereas model-free with model dynamics solved it in
400.

4.2 Experiment 2: Predictions and sample efficiency for Maze

The predictions of model 4 are compared with the ground truth in figures 7(a), 7(b), and 7(c) after
10, 100 and 300 episodes respectively. As can be qualitatively observed, our model learns to make
accurate predictions on agent and goal states after 10 episodes. Obstacle trajectories are also predicted
accurately after 100 episodes of training. At this stage, the average F1 score on obstacle predictions
is 0.83.

Training episodes F1 score : Agent F1 score : Obstacles F1 score : Goal
After 10 episodes 0.83 0.22 0.97

After 100 episodes 0.92 0.83 0.99
After 300 episodes 0.98 0.93 1

(a) Next state predictions (b) Next state predictions after 100 episodes

(c) Next state predictions after 300 episodes

Figure 7: Progress of the trained dynamics model

With an addition of fake episodes, DQN required lesser number of interactions with real environment.
8(a) and 8(b). Averaging over 10 runs, DQN alone solved the environment in 700 episodes whereas
on augmentation with model dynamics solved it in 250. We can see some interesting policies that
emerge over training in the video: https://github.com/sha2nkt/drl_project_final. Since
rewards from collision are more frequent, the agent first learns to maneuver in the environment
without colliding. Eventually, the agent learns to wait until the obstacle has passed before proceeding
to the goal state. Finally, it learns to quickly reach the goal while avoiding collision. This behaviour
is reminiscent of how humans behave in crowded environments.

Method Real episodes on CartPole Real episodes on Maze
Model-free 650 700

Model-free with dynamics model 400 250

6

https://github.com/sha2nkt/drl_project_final

(a) DQN (b) DQN with dynamics model

Figure 8: Average training rewards vs number of real episodes in Maze

4.3 Experiment 3: Predictions for Pong

Figure 9: Prediction model on Pong

For dealing with high-dimensional state space in Atari environments, we prefer to work with L2

loss formulation over multi-label binary cross entropy. We tried training our model on random
policy at first. Unfortunately, even with extensive hyperparameter tuning, we couldn’t resolve the
averaging/blurring effects on the moving ball and paddle locations.

We therefore decided to integrate an adversarial loss formulation for jointly optimizing our model
along with the standard L2 loss.

For the Generative model, we use a similar architecture as in 4. In addition, we compute a binary
generative cross-entropy loss using the output features of the upsampling module. The generative
model is thus optimized using the following objective.

Lg =
1

2
||x̂i − xi||2 + λEz∼pz(z)[log(D(G(z)))]

where λ is the weighting between L2 loss and the generative cross-entropy loss.

The discriminator network is optimized using the standard GAN objective:

Ld = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

7

As can be seen in Fig. 9, the task of learning the model becomes hard when the state-space
dimensionality increases. Even though we were able to predict the location of the ball and the
opponent paddle, the results are only an approximation. It is worth noting that the agent paddle is
blurred out in Fig. 9 as we trained our dynamics model on a random policy. Adding such blurry states
confuses the DQN agent, leading to deterioration in sample efficiency. We also notice that the errors
compound over noisy steps in an episode.

5 Conclusion

We observe from our experiments that the increase in sample efficiency is correlated with the accuracy
of the dynamics model. If the predictions are accurate, fake episodes can be good substitutes for real
interactions. From our experience with high dimensional state-space environments like Pong, we
claim that the bottleneck in our approach is the model-learner. It can be hard for current generative
networks to learn the true underlying dynamics. However, our hope rides on current trends towards
speedy progress in generative modeling. Given accurate generative models, we can extend this
approach for real-world applicability.

References
[1] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environ-

ment simulators. arXiv preprint arXiv:1704.02254, 2017.

[2] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for
robotics. Foundations and Trends R© in Robotics, 2(1–2):1–142, 2013.

[3] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom
Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in
rich environments. arXiv preprint arXiv:1707.02286, 2017.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[5] Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. arXiv preprint arXiv:1610.00527,
2016.

[6] Felix Leibfried, Nate Kushman, and Katja Hofmann. A deep learning approach for joint video
frame and reward prediction in atari games. arXiv preprint arXiv:1611.07078, 2016.

[7] William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video
prediction and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[9] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. CoRR,
abs/1708.02596, 2017.

[10] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-
conditional video prediction using deep networks in atari games. In Advances in Neural
Information Processing Systems, pages 2863–2871, 2015.

[11] Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforce-
ment learning. arXiv preprint arXiv:1702.08360, 2017.

[12] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

8

[13] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[14] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[15] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An uncertain future: Forecast-
ing from static images using variational autoencoders. In European Conference on Computer
Vision, pages 835–851. Springer, 2016.

[16] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages 5–32. Springer, 1992.

9

	Introduction
	Related Work

	Environments
	Methods
	Prediction from physical state: CartPole environment
	Effect of the policy on state distribution
	Training

	Prediction from raw pixels: Maze environment

	Results
	Experiment 1: Predictions and sample efficiency for CartPole
	Experiment 2: Predictions and sample efficiency for Maze
	Experiment 3: Predictions for Pong

	Conclusion

