Feedback Directed Prefetching

Aashi Manglik (13006)
Pramod Chunduri (13221)
Kriti Joshi (13358)

Abstract— Data prefetching is one of the crucial methods of
hiding load latency in modern processors. However, prefetching
useless data wastes resources such as memory bandwidth,
cache or prefetch buffer space and leads to excess energy
consumption. If prefetched data is not accurate, it also leads
to pollution of cache, thereby having a negative impact on per-
formance. Hence, accurate prediction of addresses to prefetch
is important. Even if the prefetch requests are accurate, they
will not be able to increase performance if they are prefetched
late, i.e., not prefetched by the time a load or store instruction
demands the data. In this project, we simulated a stream-based
data prefetcher and dynamically modified its agressiveness
using three attributes - prefetcher accuracy, timeliness, and
cache pollution.

[. INTRODUCTION

Predicting the address that will be needed in future and
bringing it early into the cache is referred to as prefetching.
This can eliminate compulsory misses and reduce memory
latency. Prefetching can be done by recognising the pattern
in memory requests. Though prefetching mispredicted
addresses does not affect correctness, it can deteriorate the
performance.

Prefetch distance and prefetch degree determine the
aggressiveness of the prefetcher. Prefetch degree is the
number of cache blocks requested (as prefetch requests) per
demand access. Prefetch distance indicates how far ahead of
the demand access stream the prefetcher can send requests.
In conventional prefetcher, these two parameters are fixed
throughout whereas in the feedback directed prefetching
these are changed dynamically for better peformance. In
our implementation, the data is prefetched into L2 cache -
128KB 8-way set-associative with LRU replacement.

II. FEEDBACK DIRECTED PREFETCHING

A. Metrics of Prefetcher Performance

1) Prefetch Accuracy: The prefetched cache blocks that
are accessed by the instructions later are referred to as
used prefetches. When a cache hit occurs, we check if the
cache block has come due to prefetching and increment the
number of used prefetches.

Used prefetches
Prefetches sent to memory

Prefetch Accuracy =

2) Prefetch Lateness: A dummy Miss Status Holding
Register (MSHR) is implemented by capturing the cache
transactions. This is done mainly because of the restricted
environment provided by the dpc2sim module. The
simulated MSHR stores in-flight memory requests to find
if the accurate prefetch request arrived in time. An entry
in this register is allocated when a prefetch request is sent
to memory - the valid bit is set and address gets stored.
The valid bit is reset when the block is inserted into L2
cache. If a cache miss occurs, the valid entries in register
are compared with the requested address. If the entry is
found, number of late prefetches is incremented.

Number of late prefetches
Used prefetches

Prefetch Lateness =

3) Cache Pollution: To track cache pollution, a bit
vector of size 4096x1 is initialised with zeros and referred
to as pollution filter. This vector is indexed by taking a
xor operation of lower 12 bits [11:0] and next 12 bits
[23:12] of the cache block address. If a cache block is
evicted to accomodate prefetched data and this evicted block
was brought into cache through a demand miss, the bit
corresponding to this evicted block address is set to 1 in the
pollution filter. When a L2 cache miss occurs, the pollution
filter bit accessed from the demand address is checked. If
it is set, it means that the block would have been there if
no prefetcher was used. This bit is then reset. In such case,
the counter indicating demand misses due to prefetcher is
incremented. Another counter tracks the total number of L2
cache misses. Cache pollution metric is the ratio of misses
due to prefetcher to total number of cache misses.

Demand misses due to prefetcher
Demand misses

Cache Pollution =

B. Sampling-based Metrics Updation

We defined an interval of the program execution time at
the end of which the above metrics will be recomputed to
decide the aggressiveness. The length of interval is based
on the number of cache blocks evicted from L2 cache. The
maximum number of cache blocks is 4096. The evicted
count is initialised to O at the beginning of each interval
and when it exceeds a certain threshold, we decide whether
to modify the aggressiveness (increase or decrease) as
illustrated in section II-C. Table III gives the instructions
per cycle on each trace for different interval thresholds.
This was done to empirically decide the appropriate interval

length for feedback collection.

C. Dynamically Adjusting Prefetcher Aggressiveness

We used the metrics described in section II to adjust the
aggressiveness of prefetcher. There are 5 possible config-
urations declared in Table I and we choose one of these
configurations dynamically as proposed in Srinath et al [1].
For instance, the prefetching starts with third configuration
(prefetch distance = 16, prefetch degree = 2). Then after
some interval, if the prefetcher accuracy is high (> 75%),
cache is not-polluting (cache pollution < 0.25) but prefetch
lateness is high, we should increase the aggressiveness to
increase timeliness.

TABLE I
PREFETCHER CONFIGURATIONS

Configuration | Prefectch Distance | Prefetch Degree
1 4 1
2 8 1
3 16 2
4 32 4
5 64 4

If the cache pollution is high, the prefetcher is made less
aggressive (decreasing prefetch distance, prefetch degree or
both) to reduce pollution and to save memory bandwidth.

ITII. EXPERIMENTAL SETUP

The prefetcher simulation has been done on
the infrastructure provided in the Data Prefetching
Championship 2015. This setup provides traces of 8 famous
benchmarks of the SPEC CPU2006 suite, namely gcc,
GemsFDTD, Ibm, leslie3d, libquantum, mcf, milc and
omnetpp. We simulated 100000000 instructions for the
given benchmarks after a warmup of 10000000 instructions.

IV. EXPERIMENTAL RESULTS

The table below shows the Instructions Per Cycle (IPC)
values for three scenarios, one where no prefetching happens,
second with a stream prefetcher and third with the stream-
based feedback directed prefetcher (FDP).

TABLE II
PERFORMANCE COMPARISON

Benchmark | No prefetch | Stream prefetch FDP
gce 0.291329 0.275646 0.291321
GemsFDTD 3.444995 3.430123 3.430123
Ibm 1.057604 1.259321 1.079090
leslie3d 0.985227 1.031766 1.086480
libquantum 3.148157 3.169687 3.169687
mcf 0.344332 0.341985 0.341907
milc 0.980482 1.053728 0.986086
omnetpp 2.191883 2210184 2.203755

Based on the results, the following inferences can be made:

o The feedback directed prefetcher we have used is
not generally outperforming a stream based prefetcher.
However, it is still a good improvement over a no
prefetch scenario.

e One reason for this poor performance can be attributed
to the consistently low prefetch accuracy that we have
noticed. That is, the number of used prefetch blocks
are far fewer compared to the prefetch requests sent to
memory. A change in aggresiveness is not affecting the
accuracy much, due to which, significant improvement
is not achieved over a stream prefetcher.

o Another problem might be that, as proposed in the
paper[1] that in case of heavy cache pollution, the
prefetched blocks should not be alloted the MRU po-
sition but rather be inserted close to the LRU position.
However, due to the restricted environment provided
by the championship infrastructure, we did not have
the facility to choose the position in cache to insert
the block, and so could not implement this feature.
This inference is seconded by the fact that the cache
pollution metric is observed to be on a rising trend as
more instructions are simulated.

« Also important to note is the fact that dpc2sim has three
levels of cache. All interactions are done with the mid-
level cache. The last level cache (LLC) is not at all
touched. However, if the MSHR occupancy of L2 cache
is more than half, the prefetch requests are made to
LLC, which we completely ignore in our computations.
Again however, the infrastructure limits us to L2 cache
interactions only.

e As shown in Table III, length of the interval (number
of evictions after which sampling is done) doesn’t
affect performance. Same has been observed when the
threshold values for accuracy, lateness and pollution
were changed. This might be due to the low number
of instructions being simulated. Due to incompatibility
between the provided shared object and PIN, we were
unable to generate a bigger trace.

TABLE III
INTERVAL THRESHOLD VARIATION

Benchmark T=1024 T=2048 T=3072 T=4096
gcc 0.291011 | 0.291321 | 0.290855 | 0.291287
GemsFDTD | 3.430123 | 3.430123 | 3.430123 | 3.430123
Ibm 1.075331 | 1.079090 | 1.075331 | 1.079090
leslie3d 1.084779 | 1.086480 | 1.085603 | 1.086999
libquantum | 3.169687 | 3.169687 | 3.169687 | 3.169687
mcf 0.341864 | 0.341907 | 0.342125 | 0.341650
milc 0.984585 | 0.986086 | 0.984585 | 0.986086
omnetpp 2.201233 | 2.203755 | 2.204267 | 2.207636
REFERENCES

[1] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. Feed-
back directed prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers. In High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on, pages 6374. IEEE, 2007.

