Autonomous Navigation of Unmanned Aerial Vehicle (UAV)

Aashi Manglik, Krishnraj Singh Gaur, Rachit Agarwal

Abstract— This work describes a system for autonomous
navigation of an unmanned aerial vehicle in a known en-
vironment. The system requires a knowledge of location of
the UAV(Unmanned Aerial Vehicle) within the map which is
accomplished by applying Kalman filter on the data provided
by optical flow sensor and IMU(Inertial Measurement Unit)
sensor. OQur grid-based path planning algorithm use discrete
state transitions that allows the robot’s motion in particular
headings (0, 5 and %). The presented work is implemented on
a high performance quadrotor which autonomously followed
the optimised path in the known domain.

I. INTRODUCTION

In recent years there has been a rapid development of
autonomous unmanned aircraft equipped with autonomous
control devices called UAVs. At present the major UAV
applications are in defense and the main investments are
driven by future military scenarios [1]. Most military
unmanned aerial vehicles are primarily used for intelligence,
surveillance, reconnaissance and strikes. The next generation
of UAVs will execute more complex missions such as air
combat, electronic attack and network node relay. However,
it can be said that the infinite possibilities of utilizing
their outstanding characteristics for civil application
remain hidden. Potential applications of UAVs capable
of autonomous navigation include inspection of terrains,
aerial mapping and meteorology, environmental monitoring,
disaster and crisis management and research by university
laboratories.

In mobile robot navigation, the environment is mostly
represented in the form of grid and then the aim is to plan
a path from some initial robot location to desired goal
position. The grid-based map of the environment can be
represented in two ways. In binary representation, each
grid cell either represents an obstacle or free space. The
other way is to assign a cost to each grid cell which is in
proportion to the difficulty of traversing that particular area
of environment.

The path planning algorithms are extensively discussed
in the robotics research literature [2], [3]. A* search is the
most common and efficient algorithm that uses a heuristic
to compute the shortest path from a given location to goal
[4]. A* is efficient when the environment is static and
fully-observable and the action model is fully-deterministic.
Since many applications domains do not provide the luxury
of an a priori map, algorithms such as D*, incremental
A* and D* Lite were proposed [5]. These algorithms are
the extensions of A* which repairs the solution path when
a change is detected in the map. Hybrid A* is another

famous algorithm, particularly in the context of self-driving
cars. The car cannot turn around like a human and thus
there arises a need to apply hybrid A* to compute a
drivable path to the goal [6]. As shown in Fig.l, it is a
variant of the A* algorithm with a modified state-update
rule that captures continuous-state data in the discrete
search nodes of A*. Therefore, it associates with each grid
cell a continuous 3D state of the vehicle. Hybrid A* is
computationally more intensive than A* and would not
be of much use in case of quadrotor which can easily
rotate about its axis. While doing the path planning for
2D grid, the common approach is to plan from the center
of each grid cell and the transitions are allowed only
between the centers of adjacent grid cells. Applying the
linear interpolation between the two centers, the computed
paths are optimal and effective in practical applications of
robotic systems. In Section II, we have provided the detailed
description of the two versions of A* search algorithm
implemented. However, Ferguson and Stentz [7] presented
a Field D* algorithm, shown in Fig.1, in which instead
of assigning nodes to the centers of grid cells, they have
assigned nodes to the corners of each grid cell, with edges
connecting nodes that reside at corners of the same grid cell.

Classical A* Field D* Hybrid A*

Fig. 1. Tllustrations of Classical A*, Field D* and Hybrid A* Search.

To achieve autonomous navigation, the robot needs to
know where is it currently located in the global map. This
can be facilitated by equipping the robot with sensors suitable
for localisation throughout the path. Sensors have inherent
limitations such as drift and noise and thus, no independent
sensor could estimate the pose of the robot accurately. To
overcome this limitation of sensors, two or more sensors’
measurements are fused to estimate the robot’s pose applying
Kalman filter algorithm [8]. The details of the sensors used
and data fusion algorithm implemented are described in
section III.

The localisation and path planning algorithms presented in

this work are applicable for the known environment and were
implemented on a UAYV, in particular, a quadrotor platform.
The architecture and working of the on-board system of the
quadrotor is explained in section IV.

II. A* PATH PLANNING

A* algorithm is the most commonly used algorithm for
path planning. The secret to its success is that it combines
the two pieces of information. First, the paramter g(n) is
favoring vertices that are close to the starting point (similar
to Dijkstra’s algorithm explained in [9]) and other parameter
h(n) is favoring the vertices that are close to the goal (Greedy
Best-First-Search Algorithm). In the standard terminology
used, when talking about A*, g(n) represents the exact cost
of the path from the starting point to any vertex n, and h(n)
represents the heuristic estimated cost from vertex n to the
goal. A* balances the two as it moves from the starting point
to the goal. Each time through the main loop, it examines
the vertex n that has the lowest f(n) given by Eq.1.

f(n) = g(n) +h(n) M

The classical A* algorithm, as provided in section II-A, is
stated for two headings, i.e, 0 and % Thus, the action model
is restricted to four directions and using the manhattan
distance as heuristic, we are able to get the optimised path.
The manhattan distance is defined as the distance between
the two points in the grid based on a strictly horizontal
and/or vertical path. When the classical A* was applied, the
expected path to be taken by UAV is visualised as shown in
Fig.2.

Since a quadcopter can easily turn about its axis, while
hovering at a point, and take the heading of Z, it can
easily follow a diagonal path. So, the A* search Algorithm
was modified as described in II-B, in the action model
was changed to allow movement in 8 directions and
Euclidean distance was used to compute the heuristic.
Hence, implmenting this A* search Algorithm, the quarotor
is no longer expected to move in redundant steps as shown
in Fig.2 and chooses the optimized path which constitutes
diagonal motion,as shown in fig.3.

A. Classical A* Algorithm

ComputePath()
01: initialise grid
02: initialise goal
03: initialise open list
04: initialise closed list
05: place starting node in open
06: while open is not empty
07: pop the node with least f off the open list, call it p
08: generate p’s 4 successors and set their parent to p
09: for each successor s
09: if s is goal, stop

10: s.g=pg+1

11: s.h = manhattan distance from goal to s

12: s.f=sg+s.h

13: if node with same position as s is in open list

and has a lesser f than s, skip this s

14: else add s to open list
15: end for

16: push p on closed list
17: end while

Fig. 2. Path given by Classical A* Algorithm.

B. Modified A* Algorithm

The modification lies in line 8§ where the number of
successors generated is eight, instead of four as shown in
section II-A, and in lines 10 and 11, where transition cost
and heurisric are assigned as the euclidean distance between
node n and its parent and euclidean distance between node
n and goal respectively. In other words, the transition cost
is v/2 when the UAV heads diagonally and it remains to be
1 as in II-A while moving horizontally/vertically.

Fig. 3. Path given by Modified A* Algorithm.

ComputeModifiedPath()
01: initialise grid
02: initialise goal
03: initialise open list
04: initialise closed list
05: place starting node in open
06: while open is not empty
07: pop the node with least f off the open list, call it p
08: generate p’s 8 successors and set their parent to p
09: for each successor s
09: if s is goal, stop

10: s.g = p.g + euclidean distance between s and p
11: s.h = euclidean distance from goal to s

12: s.f=sg+s.h

13: if node with same position as s is in open list

and has a lesser f than s, skip this s

14: else add s to open list
15: end for

16: push p on closed list
17: end while

III. LOCALISATION

To implement the path planning algorithm on UAV, a
precise localisation is required. Many sensors such as Inertial
Measurement Unit (IMU), laser and cameras are frequently
used in solving the UAV localisation problem. Most of the
times, the robot is equipped with IMU sensor for spatial
navigation since IMUs provide high frequency acceleration
and rotation rate data that can be used independent of vehicle
models. However, using a low cost IMU gives a large amount
of error in the acceleration data which can not be used alone
for the localisation. The optical flow cameras provide the
velocity estimate but cannot be used to compute pose since
they suffer from drift due to accumulation in error during
flight. Therefore, the IMU data is fused with the optical flow
to precisely estimate the UAV’s pose. The use of Kalman
filter for the data fusion of sensors’ measurements is a well-
established technique and is presented in III-B.

A. Sensor Models

o Inertial Measurement Unit (IMU):
The IMU is used as the core sensing device. It measures
the acceleration (ay, ay, a;) and the rotation rates of
the quadrotor platform at high update rates, which can
be transformed to get the attitude of the platform.

« Optical Flow Camera (Px4flow Smart Camera):
The Optical Flow Camera measure the velocity (v, and
vy) by sensing the apparent change in the visual scene
caused by relative motion of object and camera.

B. Kalman Filter

The Kalman filter has been applied along x and y axis
separately. The variance in the values of acceleration a,
and a, are represented by o, and o, respectively. For
the px4flow smart camera, the variance in v, and vy are
represented by R, and R, respectively. The variance values
were found to be as follows:

o, = 0.007868
o, = 0.00871
R, = 0.006017
R, = 0.00995

Algorithm Kalman Filter (y, — 1, — 1):
X;: the position estimate at time ¢
v;: the velocity estimate at time ¢
dt: delta time between two states
K;: Kalman gain at time ¢
z;: sensor data at time ¢
zy: velocity data from the Optical flow camera

— -x[
e = _Vz]
(1 dt
p= o 1]
[di*
B = 2
H
H = [0 1]
_0}
i =
_Zv
1) Prediction Step:
u, = Al +Bu (2)
Y, = A%, AT +Bo’BT 3)

2) Update Step:

K, = LH'(HLH'+R))
W = W+K(z—HL) ®)
Y = (I-KH) (6)

return f, ¥,

IV. SYSTEM ARCHITECTURE

On Board Computer
ROS

Pxdflow, Sonar

Estimated Pose

(Kalman Filter) IMU, GPS, Barometer

|

Flight Controller
Master

| Motor Commands

Radio Control Switch

i

Motars ‘

IMU, Baro, RC data

Flight Controller Slave | MU Baro, RC data

Motor Commands l

Fig. 4. Hardware Architecture.

This section describes the UAV’s system architecture. A
flow chart of the hardware architecture is shown in Fig.4.
There are three Radio Frequency communication channels.
The first is a bidirectional link between the OBC(onboard
computer) and the PC ground station using wifi. The
ground station uplinks the ROS(Robot OPerating System)
commands to run the code on OBC. The second RF channel
is a link between OBC and a high level processor which
uses mavros drivers to communicate at 20 Hz using mavlink
protocol. The third RF link is a 2.4 GHz RC uplink to
the UAV which is used to bypass the autopilot [10]. The

a16mm . —
et

K%

FRONT
i —

190 Mm

Fig. 5. Quadrotor Airframe

bypass capability is used as a fail-safe mode that allows new
algorithms to be rapidly tested and debugged. There are two
flight controllers in the system- Master and Slave. Flight
controller runs a PID controller to fly, stabilize and navigate
the UAV. It takes data from various sensors, processes them
and gives commands to motor for desired control. Master
controller extracts data from sensors like IMU, GPS and
barometer to compute motor commands. In slave controller,
we get estimated pose from OBC which is computed by
Kalman filter fusion of optical flow data from Px4flow
smart camera and acceleration data from IMU sensor. Using
this estimated pose, the slave controller also computes the
motor commands. Then, using the third 2.4GHz RF link we
can switch between the master and slave processor.

A. UAV Hardware

The quadrotor platform used is a high performance system
with multiple subsystems working together to collaboratively
deliver flexible output. The UAV has multi-stack made up
of carbon fiber structure. This makes a light rugged and
configurable design and helps in integrating various other
subsystems swiftly and efficiently. The graphics shown in
Fig.13 provides overall idea of airframe.

The UAV has lithium polymer battery which powers
brushless DC motors. It has a high performance single
board computer running Linux(Ubuntu 14.04) with ROS
pre-installed. This OBC can communicate with flight
controller via USB to receive flight controller data and send
control commands or sensor outputs. It also has following
Sensors :

—] Ground

%, Station PC
Height Estimation

3

|ij, JT
| Ba__ |
Mavros
Drivers

I i

X, ¥, } EMI J, Baro, RCdata
B

Position
Controller

- %y
Kalman Fusion

pose Estimation 4
| i, |

RCdata
|

Ultrasonic

Optic Flow
Sensor

Camera(PXafiow)

On board Computer

| Slave (HLP)

|
' !

Attltude Command Sehsor Data

Master|LLP) |
Flight Controller

Fig. 6. Programming Overview Flowchart

Inertial Measurement Unit (IMU)
Barometer

« GPS

Px4flow optical flow smart camera
Matrix vision Blue Fox camera

The hardware architecture provides a flexible experimental
test bed to explore a variety of algorithms that enable
autonomous behavior for the UAVs.

B. Programming Overview

The On-board computer holds all the ROS packages and
does the processing of all the ROS nodes. The two main ROS
packages responsible for navigation are discussed here. First
package contains the Kalman fusion and A* path planning
algorithms which outputs x and y pose estimate of the
quadrotor along with the target location (x;, y;). The Kalman
filter uses the accelerometer data, optical flow data and the
altitude information. The altitude information is required to
transform the data in body fixed frame to the earth fixed
frame.The second package contains the height estimation
fusion algorithm which outputs the height (z) estimate. The
ROS mavros drivers are responsible for the commutation
and transfer of required data to-and-from the high level
processor. The target location and the current location are
then processed in the high level processor where a PID
position controller runs to provide final PWM (Pulse Width
Modulation) signals to the motors as output, as shown in
Fig.4.

V. RESULTS

In this section, the results of real time flight test are
presented which demonstrate the performance of A* path

3

] €

7

Fig. 7. Flight test at time t=1s

¥

Fig. 8. Flight test at time t=5s

planning algorithm and Kalman based localization when
implemented on the UAV. The UAV is provided with the
prior information of map in the form of 2D matrix. There
are two straight walls in the area, each considered as an
obstacle. The UAV is restricted to avoid the wall by a
distance of 0.5 metres and restricted to the speed of 0.5m/s.
The obstacles are depicted as solid grey grid and the path
followed by UAV as a thin, solid white line in the rviz
visualisation tool as shown in left hand side of the Figure
7 through Figure 14. The flight test with the UAV was
initialised after taking it to a height of about 2 metres above
its starting position. The measurement uncertainty for the
location of the obstacle aircraft is set to 0.1 m. UAV is then
switched to attitude hold and is allowed to autonomously
follow the path to the goal location avoiding the obstacles.
Figures 7 through Figure 14 show the results of the test at
various time intervals.

VI. CONCLUSIONS

This report has described an approach to autonomous
navigation for UAVs. In particular, the UAV hardware,
low-cost sensors, and a computationally efficient approach
to path planning, trajectory generation and localisation are
presented. The algorithms developed for 2D path planning
and localisation are tested on UAV. The UAV is initially
launched by the operator manually and once the UAV
has reached an operating attitude, the path planning starts
directing the UAV via waypoint and heading commands.

The two versions of A* path planning algorithm were
tested as a solution to robot motion planning problem in
the static workspace. The classical A* algorithm allowed
4 directional movement and used manhattan distance for
the heuristic calculation. To overcome the limitations of
restricted movement in 4 directions, an improved version
of A* algorithm was proposed which allowed 8 directional
movement and used Euclidean distance for heuristic

" u‘ } -

Fig. 9. Flight test at time t=10s

Fig. 10. Flight test at time t=15s

computation and thus allowed the UAV to choose the most
optimized path. The presented work on path planning can
be applied in general to any type of robot.

TABLE I
STANDARD DEVIATION IN ESTIMATED POSE

Standard deviation SVO Kalman Filter
x(in m) 0.1300 0.5301
y(in m) 0.1436 0.7436

Further, a Kalman filter based method was presented for
mobile robot localisation and compared with the already
established semi-visual odometry based localization [11].
The results were then compared in hovering condition of
the UAV and standard deviation has been presented in table
I for a flight time of 5 minutes. The Kalman filter was also
compared with the stand alone optical flow data. The Kalman
filter was found to perform much better as compared to the
pose estimated via stand alone optical flow sensor.

ACKNOWLEDGMENT

We would like to thank Aarav Unmanned Systems for
providing us with the quadrotor platform(UAV) and Dr.
Gaurav Pandey for the esteemed guidance.

REFERENCES

[1] A. M. Samad, N. Kamarulzaman, M. A. Hamdani, T. A. Mastor,
and K. A. Hashim, “The potential of unmanned aerial vehicle (uav)
for civilian and mapping application,” in System Engineering and
Technology (ICSET), 2013 IEEE 3rd International Conference on, Aug
2013, pp. 313-318.

[2] D. Rathbun, S. Kragelund, A. Pongpunwattana, and B. Capozzi, “An
evolution based path planning algorithm for autonomous motion of
a uav through uncertain environments,” in Digital Avionics Systems
Conference, 2002. Proceedings. The 21st, vol. 2, 2002, pp. 8D2-1-
8D2-12 vol.2.

[3] A.T. Stentz , “Optimal and efficient path planning for partially-known
environments,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA ’94), vol. 4, May 1994, pp. 3310
- 3317.

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

%/\q\

Fig. 11. Flight test at time t=20s

J
e =1 o=

\

)\

Fig. 12. Flight test at time t=25s

N. Sariff and N. Buniyamin, “An overview of autonomous mobile
robot path planning algorithms,” in Research and Development, 2006.
SCOReD 2006. 4th Student Conference on, June 2006, pp. 183-188.
S. Koenig and M. Likhachev, “D* lite.” in AAAI/IAAI, 2002, pp. 476—
483.

D. Doglov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”’
vol. 29, April 2010, pp. 485-501.

D. Ferguson and A. Stentz, “Field d*: An interpolation-based path
planner and replanner,” in Robotics research. Springer Berlin
Heidelberg, 2007, pp. 239-253.

I. Ashokaraj, A. Tsourdos, P. Silson, and B. White, “Sensor based
robot localisation and navigation: using interval analysis and extended
kalman filter,” in Control Conference, 2004. 5th Asian, vol. 2, July
2004, pp. 1086-1093 Vol.2.

H. Wang, Y. Yu, and Q. Yuan, “Application of dijkstra algorithm in
robot path-planning,” in Mechanic Automation and Control Engineer-
ing (MACE), 2011 Second International Conference on, July 2011,
pp. 1067-1069.

R. W. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen,
'W. Johnson, T. McLain, and M. Goodrich, “Autonomous vehicle tech-
nologies for small fixed-wing uavs,” Journal of Aerospace Computing,
Information, and Communication, vol. 2, no. 1, pp. 92-108, 2005.
C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE, 2014, pp. 15-22.

Fig. 13. Flight test at time t=30s

Fig. 14. Flight test at time t=35s

