
Autonomous Navigation of Unmanned Aerial Vehicle (UAV)

Aashi Manglik, Krishnraj Singh Gaur, Rachit Agarwal

Abstract— This work describes a system for autonomous
navigation of an unmanned aerial vehicle in a known en-
vironment. The system requires a knowledge of location of
the UAV(Unmanned Aerial Vehicle) within the map which is
accomplished by applying Kalman filter on the data provided
by optical flow sensor and IMU(Inertial Measurement Unit)
sensor. Our grid-based path planning algorithm use discrete
state transitions that allows the robot’s motion in particular
headings (0, π

2 and π
4 ). The presented work is implemented on

a high performance quadrotor which autonomously followed
the optimised path in the known domain.

I. INTRODUCTION

In recent years there has been a rapid development of

autonomous unmanned aircraft equipped with autonomous

control devices called UAVs. At present the major UAV

applications are in defense and the main investments are

driven by future military scenarios [1]. Most military

unmanned aerial vehicles are primarily used for intelligence,

surveillance, reconnaissance and strikes. The next generation

of UAVs will execute more complex missions such as air

combat, electronic attack and network node relay. However,

it can be said that the infinite possibilities of utilizing

their outstanding characteristics for civil application

remain hidden. Potential applications of UAVs capable

of autonomous navigation include inspection of terrains,

aerial mapping and meteorology, environmental monitoring,

disaster and crisis management and research by university

laboratories.

In mobile robot navigation, the environment is mostly

represented in the form of grid and then the aim is to plan

a path from some initial robot location to desired goal

position. The grid-based map of the environment can be

represented in two ways. In binary representation, each

grid cell either represents an obstacle or free space. The

other way is to assign a cost to each grid cell which is in

proportion to the difficulty of traversing that particular area

of environment.

The path planning algorithms are extensively discussed

in the robotics research literature [2], [3]. A* search is the

most common and efficient algorithm that uses a heuristic

to compute the shortest path from a given location to goal

[4]. A* is efficient when the environment is static and

fully-observable and the action model is fully-deterministic.

Since many applications domains do not provide the luxury

of an a priori map, algorithms such as D*, incremental

A* and D* Lite were proposed [5]. These algorithms are

the extensions of A* which repairs the solution path when

a change is detected in the map. Hybrid A* is another

famous algorithm, particularly in the context of self-driving

cars. The car cannot turn around like a human and thus

there arises a need to apply hybrid A* to compute a

drivable path to the goal [6]. As shown in Fig.1, it is a

variant of the A* algorithm with a modified state-update

rule that captures continuous-state data in the discrete

search nodes of A*. Therefore, it associates with each grid

cell a continuous 3D state of the vehicle. Hybrid A* is

computationally more intensive than A* and would not

be of much use in case of quadrotor which can easily

rotate about its axis. While doing the path planning for

2D grid, the common approach is to plan from the center

of each grid cell and the transitions are allowed only

between the centers of adjacent grid cells. Applying the

linear interpolation between the two centers, the computed

paths are optimal and effective in practical applications of

robotic systems. In Section II, we have provided the detailed

description of the two versions of A* search algorithm

implemented. However, Ferguson and Stentz [7] presented

a Field D* algorithm, shown in Fig.1, in which instead

of assigning nodes to the centers of grid cells, they have

assigned nodes to the corners of each grid cell, with edges

connecting nodes that reside at corners of the same grid cell.

Fig. 1. Illustrations of Classical A*, Field D* and Hybrid A* Search.

To achieve autonomous navigation, the robot needs to

know where is it currently located in the global map. This

can be facilitated by equipping the robot with sensors suitable

for localisation throughout the path. Sensors have inherent

limitations such as drift and noise and thus, no independent

sensor could estimate the pose of the robot accurately. To

overcome this limitation of sensors, two or more sensors’

measurements are fused to estimate the robot’s pose applying

Kalman filter algorithm [8]. The details of the sensors used

and data fusion algorithm implemented are described in

section III.

The localisation and path planning algorithms presented in



this work are applicable for the known environment and were

implemented on a UAV, in particular, a quadrotor platform.

The architecture and working of the on-board system of the

quadrotor is explained in section IV.

II. A* PATH PLANNING

A* algorithm is the most commonly used algorithm for

path planning. The secret to its success is that it combines

the two pieces of information. First, the paramter g(n) is

favoring vertices that are close to the starting point (similar

to Dijkstra’s algorithm explained in [9]) and other parameter

h(n) is favoring the vertices that are close to the goal (Greedy

Best-First-Search Algorithm). In the standard terminology

used, when talking about A*, g(n) represents the exact cost

of the path from the starting point to any vertex n, and h(n)
represents the heuristic estimated cost from vertex n to the

goal. A* balances the two as it moves from the starting point

to the goal. Each time through the main loop, it examines

the vertex n that has the lowest f (n) given by Eq.1.

f (n) = g(n)+ h(n) (1)

The classical A* algorithm, as provided in section II-A, is

stated for two headings, i.e, 0 and π
2

. Thus, the action model

is restricted to four directions and using the manhattan

distance as heuristic, we are able to get the optimised path.

The manhattan distance is defined as the distance between

the two points in the grid based on a strictly horizontal

and/or vertical path. When the classical A* was applied, the

expected path to be taken by UAV is visualised as shown in

Fig.2.

Since a quadcopter can easily turn about its axis, while

hovering at a point, and take the heading of π
4

, it can

easily follow a diagonal path. So, the A* search Algorithm

was modified as described in II-B, in the action model

was changed to allow movement in 8 directions and

Euclidean distance was used to compute the heuristic.

Hence, implmenting this A* search Algorithm, the quarotor

is no longer expected to move in redundant steps as shown

in Fig.2 and chooses the optimized path which constitutes

diagonal motion,as shown in fig.3.

A. Classical A* Algorithm

ComputePath()
01: initialise grid
02: initialise goal
03: initialise open list
04: initialise closed list
05: place starting node in open
06: while open is not empty
07: pop the node with least f off the open list, call it p
08: generate p’s 4 successors and set their parent to p
09: for each successor s
09: if s is goal, stop
10: s.g = p.g + 1
11: s.h = manhattan distance from goal to s
12: s. f = s.g + s.h
13: if node with same position as s is in open list

and has a lesser f than s, skip this s

14: else add s to open list
15: end for
16: push p on closed list
17: end while

Fig. 2. Path given by Classical A* Algorithm.

B. Modified A* Algorithm

The modification lies in line 8 where the number of

successors generated is eight, instead of four as shown in

section II-A, and in lines 10 and 11, where transition cost

and heurisric are assigned as the euclidean distance between

node n and its parent and euclidean distance between node

n and goal respectively. In other words, the transition cost

is
√

2 when the UAV heads diagonally and it remains to be

1 as in II-A while moving horizontally/vertically.

Fig. 3. Path given by Modified A* Algorithm.

ComputeModifiedPath()
01: initialise grid
02: initialise goal
03: initialise open list
04: initialise closed list
05: place starting node in open
06: while open is not empty
07: pop the node with least f off the open list, call it p
08: generate p’s 8 successors and set their parent to p
09: for each successor s
09: if s is goal, stop
10: s.g = p.g + euclidean distance between s and p
11: s.h = euclidean distance from goal to s
12: s. f = s.g + s.h
13: if node with same position as s is in open list

and has a lesser f than s, skip this s



14: else add s to open list
15: end for
16: push p on closed list
17: end while

III. LOCALISATION

To implement the path planning algorithm on UAV, a

precise localisation is required. Many sensors such as Inertial

Measurement Unit (IMU), laser and cameras are frequently

used in solving the UAV localisation problem. Most of the

times, the robot is equipped with IMU sensor for spatial

navigation since IMUs provide high frequency acceleration

and rotation rate data that can be used independent of vehicle

models. However, using a low cost IMU gives a large amount

of error in the acceleration data which can not be used alone

for the localisation. The optical flow cameras provide the

velocity estimate but cannot be used to compute pose since

they suffer from drift due to accumulation in error during

flight. Therefore, the IMU data is fused with the optical flow

to precisely estimate the UAV’s pose. The use of Kalman

filter for the data fusion of sensors’ measurements is a well-

established technique and is presented in III-B.

A. Sensor Models

• Inertial Measurement Unit (IMU):

The IMU is used as the core sensing device. It measures

the acceleration (ax, ay, az) and the rotation rates of

the quadrotor platform at high update rates, which can

be transformed to get the attitude of the platform.

• Optical Flow Camera (Px4flow Smart Camera):

The Optical Flow Camera measure the velocity (vx and

vy) by sensing the apparent change in the visual scene

caused by relative motion of object and camera.

B. Kalman Filter

The Kalman filter has been applied along x and y axis

separately. The variance in the values of acceleration ax

and ay are represented by σx and σy respectively. For

the px4flow smart camera, the variance in vx and vy are

represented by Rx and Ry respectively. The variance values

were found to be as follows:

σx = 0.007868

σy = 0.00871

Rx = 0.006017

Ry = 0.00995

Algorithm Kalman Filter (µt − 1,Σt − 1):

xt : the position estimate at time t

vt : the velocity estimate at time t

dt: delta time between two states

Kt : Kalman gain at time t

zt : sensor data at time t

zv: velocity data from the Optical flow camera

µt =

[

xt

vt

]

A =

[

1 dt

0 1

]

B =

[

dt2

2

dt

]

H =
[

0 1
]

zt =

[

0

zv

]

1) Prediction Step:

µ t = Aµt−1 +But (2)

Σt = AΣt−1AT +Bσ2BT (3)

2) Update Step:

Kt = ΣtH
T (HΣtH

T +R) (4)

µt = µt +K(zt −Hµt) (5)

Σt = (I−KtH)Σt (6)

return µt , Σt

IV. SYSTEM ARCHITECTURE

Fig. 4. Hardware Architecture.

This section describes the UAV’s system architecture. A

flow chart of the hardware architecture is shown in Fig.4.

There are three Radio Frequency communication channels.

The first is a bidirectional link between the OBC(onboard

computer) and the PC ground station using wifi. The

ground station uplinks the ROS(Robot OPerating System)

commands to run the code on OBC. The second RF channel

is a link between OBC and a high level processor which

uses mavros drivers to communicate at 20 Hz using mavlink

protocol. The third RF link is a 2.4 GHz RC uplink to

the UAV which is used to bypass the autopilot [10]. The



Fig. 5. Quadrotor Airframe

bypass capability is used as a fail-safe mode that allows new

algorithms to be rapidly tested and debugged. There are two

flight controllers in the system- Master and Slave. Flight

controller runs a PID controller to fly, stabilize and navigate

the UAV. It takes data from various sensors, processes them

and gives commands to motor for desired control. Master

controller extracts data from sensors like IMU, GPS and

barometer to compute motor commands. In slave controller,

we get estimated pose from OBC which is computed by

Kalman filter fusion of optical flow data from Px4flow

smart camera and acceleration data from IMU sensor. Using

this estimated pose, the slave controller also computes the

motor commands. Then, using the third 2.4GHz RF link we

can switch between the master and slave processor.

A. UAV Hardware

The quadrotor platform used is a high performance system

with multiple subsystems working together to collaboratively

deliver flexible output. The UAV has multi-stack made up

of carbon fiber structure. This makes a light rugged and

configurable design and helps in integrating various other

subsystems swiftly and efficiently. The graphics shown in

Fig.13 provides overall idea of airframe.

The UAV has lithium polymer battery which powers

brushless DC motors. It has a high performance single

board computer running Linux(Ubuntu 14.04) with ROS

pre-installed. This OBC can communicate with flight

controller via USB to receive flight controller data and send

control commands or sensor outputs. It also has following

sensors :

Fig. 6. Programming Overview Flowchart

• Inertial Measurement Unit (IMU)

• Barometer

• GPS

• Px4flow optical flow smart camera

• Matrix vision Blue Fox camera

The hardware architecture provides a flexible experimental

test bed to explore a variety of algorithms that enable

autonomous behavior for the UAVs.

B. Programming Overview

The On-board computer holds all the ROS packages and

does the processing of all the ROS nodes. The two main ROS

packages responsible for navigation are discussed here. First

package contains the Kalman fusion and A* path planning

algorithms which outputs x and y pose estimate of the

quadrotor along with the target location (xt , yt ). The Kalman

filter uses the accelerometer data, optical flow data and the

altitude information. The altitude information is required to

transform the data in body fixed frame to the earth fixed

frame.The second package contains the height estimation

fusion algorithm which outputs the height (z) estimate. The

ROS mavros drivers are responsible for the commutation

and transfer of required data to-and-from the high level

processor. The target location and the current location are

then processed in the high level processor where a PID

position controller runs to provide final PWM (Pulse Width

Modulation) signals to the motors as output, as shown in

Fig.4.

V. RESULTS

In this section, the results of real time flight test are

presented which demonstrate the performance of A* path



Fig. 7. Flight test at time t=1s

Fig. 8. Flight test at time t=5s

planning algorithm and Kalman based localization when

implemented on the UAV. The UAV is provided with the

prior information of map in the form of 2D matrix. There

are two straight walls in the area, each considered as an

obstacle. The UAV is restricted to avoid the wall by a

distance of 0.5 metres and restricted to the speed of 0.5m/s.

The obstacles are depicted as solid grey grid and the path

followed by UAV as a thin, solid white line in the rviz

visualisation tool as shown in left hand side of the Figure

7 through Figure 14. The flight test with the UAV was

initialised after taking it to a height of about 2 metres above

its starting position. The measurement uncertainty for the

location of the obstacle aircraft is set to 0.1 m. UAV is then

switched to attitude hold and is allowed to autonomously

follow the path to the goal location avoiding the obstacles.

Figures 7 through Figure 14 show the results of the test at

various time intervals.

VI. CONCLUSIONS

This report has described an approach to autonomous

navigation for UAVs. In particular, the UAV hardware,

low-cost sensors, and a computationally efficient approach

to path planning, trajectory generation and localisation are

presented. The algorithms developed for 2D path planning

and localisation are tested on UAV. The UAV is initially

launched by the operator manually and once the UAV

has reached an operating attitude, the path planning starts

directing the UAV via waypoint and heading commands.

The two versions of A* path planning algorithm were

tested as a solution to robot motion planning problem in

the static workspace. The classical A* algorithm allowed

4 directional movement and used manhattan distance for

the heuristic calculation. To overcome the limitations of

restricted movement in 4 directions, an improved version

of A* algorithm was proposed which allowed 8 directional

movement and used Euclidean distance for heuristic

Fig. 9. Flight test at time t=10s

Fig. 10. Flight test at time t=15s

computation and thus allowed the UAV to choose the most

optimized path. The presented work on path planning can

be applied in general to any type of robot.

TABLE I

STANDARD DEVIATION IN ESTIMATED POSE

Standard deviation SVO Kalman Filter

x(in m) 0.1300 0.5301

y(in m) 0.1436 0.7436

Further, a Kalman filter based method was presented for

mobile robot localisation and compared with the already

established semi-visual odometry based localization [11].

The results were then compared in hovering condition of

the UAV and standard deviation has been presented in table

I for a flight time of 5 minutes. The Kalman filter was also

compared with the stand alone optical flow data. The Kalman

filter was found to perform much better as compared to the

pose estimated via stand alone optical flow sensor.

ACKNOWLEDGMENT

We would like to thank Aarav Unmanned Systems for

providing us with the quadrotor platform(UAV) and Dr.

Gaurav Pandey for the esteemed guidance.

REFERENCES

[1] A. M. Samad, N. Kamarulzaman, M. A. Hamdani, T. A. Mastor,
and K. A. Hashim, “The potential of unmanned aerial vehicle (uav)
for civilian and mapping application,” in System Engineering and

Technology (ICSET), 2013 IEEE 3rd International Conference on, Aug
2013, pp. 313–318.

[2] D. Rathbun, S. Kragelund, A. Pongpunwattana, and B. Capozzi, “An
evolution based path planning algorithm for autonomous motion of
a uav through uncertain environments,” in Digital Avionics Systems

Conference, 2002. Proceedings. The 21st, vol. 2, 2002, pp. 8D2–1–
8D2–12 vol.2.

[3] A. T. Stentz , “Optimal and efficient path planning for partially-known
environments,” in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA ’94), vol. 4, May 1994, pp. 3310
– 3317.



Fig. 11. Flight test at time t=20s

Fig. 12. Flight test at time t=25s

[4] N. Sariff and N. Buniyamin, “An overview of autonomous mobile
robot path planning algorithms,” in Research and Development, 2006.

SCOReD 2006. 4th Student Conference on, June 2006, pp. 183–188.
[5] S. Koenig and M. Likhachev, “D* lite.” in AAAI/IAAI, 2002, pp. 476–

483.
[6] D. Doglov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning

for autonomous vehicles in unknown semi-structured environments,”
vol. 29, April 2010, pp. 485–501.

[7] D. Ferguson and A. Stentz, “Field d*: An interpolation-based path
planner and replanner,” in Robotics research. Springer Berlin
Heidelberg, 2007, pp. 239–253.

[8] I. Ashokaraj, A. Tsourdos, P. Silson, and B. White, “Sensor based
robot localisation and navigation: using interval analysis and extended
kalman filter,” in Control Conference, 2004. 5th Asian, vol. 2, July
2004, pp. 1086–1093 Vol.2.

[9] H. Wang, Y. Yu, and Q. Yuan, “Application of dijkstra algorithm in
robot path-planning,” in Mechanic Automation and Control Engineer-

ing (MACE), 2011 Second International Conference on, July 2011,
pp. 1067–1069.

[10] R. W. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen,
W. Johnson, T. McLain, and M. Goodrich, “Autonomous vehicle tech-
nologies for small fixed-wing uavs,” Journal of Aerospace Computing,

Information, and Communication, vol. 2, no. 1, pp. 92–108, 2005.
[11] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct

monocular visual odometry,” in Robotics and Automation (ICRA),

2014 IEEE International Conference on. IEEE, 2014, pp. 15–22.

Fig. 13. Flight test at time t=30s

Fig. 14. Flight test at time t=35s


